Description

  • Edit Distance
  • Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

    You have the following three operations permitted on a word:

    Insert a characterDelete a characterReplace a character

    Example 1:

    Input: word1 = "horse", word2 = "ros"Output: 3Explanation:horse -> rorse (replace \'h\' with \'r\')rorse -> rose (remove \'r\')rose -> ros (remove \'e\')Example 2:

    Input: word1 = "intention", word2 = "execution"Output: 5Explanation:intention -> inention (remove \'t\')inention -> enention (replace \'i\' with \'e\')enention -> exention (replace \'n\' with \'x\')exention -> exection (replace \'n\' with \'c\')exection -> execution (insert \'u\')

    Constraints:

    0 <= word1.length, word2.length <= 500word1 and word2 consist of lowercase English letters.

    Answer & Explaining

    #include <string.h>
    #include <stdio.h>
    #include <stdlib.h>
    #include <math.h>

    // 计算字符串word1和word2之间的最小Edit Distance
    int minDistance(char* word1, char* word2) {
    int m = strlen(word1); // 获取word1的长度
    int n = strlen(word2); // 获取word2的长度

    // 动态规划表,分配空间;m代表word1长度,n代表word2长度
    int **dp = (int **)malloc((m + 1) * sizeof(int *));
    for (int i = 0; i <= m; i++) {
    dp[i] = (int *)malloc((n + 1) * sizeof(int));
    }

    // 初始化DP表的边界值
    // 当word2为空时,word1需要删除m次
    for (int i = 0; i <= m; i++) {
    dp[i][0] = i;
    }
    // 当word1为空时,word2需要插入n次
    for (int j = 0; j <= n; j++) {
    dp[0][j] = j;
    }

    // 填充DP表
    for (int i = 1; i <= m; i++) { // 遍历word1的每个字符
    for (int j = 1; j <= n; j++) { // 遍历word2的每个字符
    if (word1[i - 1] == word2[j - 1]) {
    // 当字符相同时,直接继承左上角的值
    dp[i][j] = dp[i - 1][j - 1];
    } else {
    // 当字符不同时,取三种操作的最小值加1
    dp[i][j] = 1 + fmin(fmin(dp[i - 1][j], // 删除操作
    dp[i][j - 1]), // 插入操作
    dp[i - 1][j - 1]); // 替换操作
    }
    }
    }

    int result = dp[m][n]; // 最终结果存储在dp[m][n]中

    // 释放动态分配的内存
    for (int i = 0; i <= m; i++) {
    free(dp[i]);
    }
    free(dp);

    return result; // 返回最小编辑距离
    }

    Testing

    #include <string.h>
    #include <stdio.h>
    #include <stdlib.h>
    #include <math.h>

    // 计算字符串word1和word2之间的最小Edit Distance
    int minDistance(char* word1, char* word2) {
    int m = strlen(word1); // 获取word1的长度
    int n = strlen(word2); // 获取word2的长度

    // 动态规划表,分配空间;m代表word1长度,n代表word2长度
    int **dp = (int **)malloc((m + 1) * sizeof(int *));
    for (int i = 0; i <= m; i++) {
    dp[i] = (int *)malloc((n + 1) * sizeof(int));
    }

    // 初始化DP表的边界值
    // 当word2为空时,word1需要删除m次
    for (int i = 0; i <= m; i++) {
    dp[i][0] = i;
    }
    // 当word1为空时,word2需要插入n次
    for (int j = 0; j <= n; j++) {
    dp[0][j] = j;
    }

    // 填充DP表
    for (int i = 1; i <= m; i++) { // 遍历word1的每个字符
    for (int j = 1; j <= n; j++) { // 遍历word2的每个字符
    if (word1[i - 1] == word2[j - 1]) {
    // 当字符相同时,直接继承左上角的值
    dp[i][j] = dp[i - 1][j - 1];
    } else {
    // 当字符不同时,取三种操作的最小值加1
    dp[i][j] = 1 + fmin(fmin(dp[i - 1][j], // 删除操作
    dp[i][j - 1]), // 插入操作
    dp[i - 1][j - 1]); // 替换操作
    }
    }
    }

    int result = dp[m][n]; // 最终结果存储在dp[m][n]中

    // 释放动态分配的内存
    for (int i = 0; i <= m; i++) {
    free(dp[i]);
    }
    free(dp);

    return result; // 返回最小编辑距离
    }

    // 测试函数
    int main() {
    char word1[] = "horse"; // 测试字符串1
    char word2[] = "ros"; // 测试字符串2
    printf("Minimum Edit Distance: %d\\n", minDistance(word1, word2)); // 输出结果
    return 0;
    }